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PMaC Lab 

 

 Goal: Understand factors that affect runtime and now recently 
energy performance of HPC apps on current and future HPC 
systems 

 PMaC framework provides fast and accurate predictions 

– Input: software characteristics, input data, hardware 
parameters 

– Output: Prediction model that predicts expected 
performance 

 Tools : PEBIL, PMaCInst, PSiNSTracer Etracer, IOTracer, 
ShmemTracer, PIR 

 Simulation: PSiNS, PSaPP 
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Prediction framework 
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Outline 

 Introduction 

 

 Methodology- developing models for FPGAs 
and GPUs 

 

 Results- workload predictions on 
accelerators 

 

 References 
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Why Accelerators? 

 

 Traditional processing 

– Solves the common case 

– Limited performance for specialized functions 

 

 Solution : Use special purpose co-
processors or Hardware Accelerators 

– Examples: FPGA, GPU 
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Application porting is time consuming 

 HPC apps can case exceed 100,000 lines of 
code 

 Choice of accelerator is not apparent 

 Prudent to evaluate benefit prior to porting  

 

 Solution: performance predictions models 

– Allow fast evaluations without porting or running 

– Accuracy has to be high to be valuable 
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Methodology 

 First identify code sections that may benefit 
from accelerators 

 HPC applications can be expressed by a 
small set of commonly occurring compute 
and data-access patterns also called as 
idioms, example transpose, reduction. 

 Predict performance of idiom instances on 
accelerators. 

 Port only instances that are predicted to run 
faster 
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Our Study 

 Accelerators: Convey HC-1 FPGA system 
and NVIDIA FERMI GPU (TESLA 2070) 

 Characterize accelerators for 8  common 
HPC idioms 

 Develop and validate idiom models on two 
real-world benchmarks.  

 Present a case study of a hypothetical 
Supercomputer with FPGAs, GPUs for two 
popular HPC apps predict speedups up to 
20% 
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What are Idioms 

 

 Idiom is a pattern of computation and 
memory access. 

 

 Example: Stream copy 

 for (int i=0;i<n;i++)  

  A[i] = B[i] ;  
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Idioms Used  

 Stream : A[i] = B[i] + C[i] 

 Gather: A[i] = B[C[i]] 

 Scatter: A[C[i]] = B[i] 

 Transpose: A[i][j] = B[j][i] 

 Reduction: s = s + A[i] 

 Stencil: A[i] = A[i-1] + A[i+1] 

 Matrix Vector Multiply: C[i] = A[i][j]*B[i] 

 Matrix Matrix Multiply: C[i][j] = A[i][j]*B[k][j] 
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Hardware Accelerator #1 – Convey HC-1 FPGA 

Commodity Intel Server Convey FPGA-based Co-processor 
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Hardware Accelerator #2 – NVIDIA TESLA 2070C GPU 

x86 Host 

Host 

Memory 

SM0 

 

(32 Cores, 

64KB L1 

cache, 

Shared 

memory) 

SM1 

 

(32 Cores, 

64KB L1 

cache, 

Shared 

memory) 

SM15 

 

(32 Cores, 

64KB L1 

cache, 

Shared 

memory) 

L2 Cache 

Device Memory 

… 
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Accelerator Characterizations 

 

 Simple benchmarks to profile capabilities of 
GPU, FPGA, and CPU to perform idiom 
operations 

 

 Each benchmark ranges over different 
memory sizes 
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Stream, Stencil 
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Transpose, Reduction 
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Gather, Scatter 
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Cost of Data Migration 
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Combining idiom plots and data migration costs illustrates the complexity of 

determining the best achievable performance from the GPU/FPGA for a given 

data size and it is interesting to note this space is complex – there is no clear 

winner among CPU, FPGA, GPU it depends on the idiom and the dataset size.  
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Application Characterizations – finding 

idioms 

 PMaC Idiom Recognizer (PIR):  

– GCC plugin recognizes idioms during compilation 
using IR tree analysis 

– Users can specify different idioms using PIR’s 
idiom expression syntax 

 

 File  Line#  Function Idiom Code 

foo.c 623 Func1 gather a[i] =    b[d[j]] 

tmp.c 992 Func2 stream x[j]=  c[i] 
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Application Characterizations – finding data 

size per idiom 

 

 PEBIL – binary instrumentation tool 

– To find data size for an idiom: 

 Determine basic blocks belonging for the idiom 

 Instrument those basic blocks to capture data range 

– Run the instrumented binary and generate traces 
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Prediction Models 
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Model Validation – Fine-grained 

 Hmmer: Protein sequence code, run with 8-tasks on 
GPU, FPGA systems 

 Flash: astrophysics code, sequential version run on 
FPGA system. 

Application Idiom  Measured Predicted % Error1 

Hmmer Stream (FPGA) 384.7 337.0 12.3% 

Hmmer Stream (GPU) 18.4 18.5 0.3% 

Hmmer Gather/Scatter 

(GPU) 

0.074 0.087 17.3% 

Flash Gather /Scatter 

(FPGA) 

69 68 1.4% 
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Model Validation – Graph500 

 FPGA validated:  

– We ran scale 24 problem, 13 MTEPS  

– PIR analysis identifies scatter and stream idiom in 
make_bfs 

– make_bfs ported by convey to FPGA, rest on CPU 

– We use CPU and FPGA models to predict 
speedups 

G500 

(CPU) 

actual 

G500 

(Ported) 

actual 

 

Bfs 

speedup 

actual 

G500 

(CPU) 

predicted 

G500 

(Ported) 

predicted 

Bfs 

speedup 

predicted 

5980 4686 

(21.64%) 

98X 5847 4757 

(18.65%) 

96x 
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Projection Study 

 Study production HPC system – Jaguar a 
Cray XT5 

– 224,256 AMD cores, 300 TB memory 

 Applications: 

– Hycom – 8 and 256 cpu runs 

– Milc – 8 and 256 cpu runs 

 Q: What would be projected speedup for an 
appliction running on machine like Jaguar 
but with FPGA and GPU on each node 
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Results – CPU predictions 

Application Measured Predicted % Error1 

Milc (8cpu) 278 277 0.4% 

Milc (256cpu) 1,345 1,350 0.4% 

HYCOM (8cpu) 262 246 6.1% 

HYCOM (256cpu) 809 663 18.1% 
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Idiom instances and runtime % 

HYCOM 

(8cpu) 

HYCOM 

(256cpu) 

Milc 

(8cpu) 

Milc 

(256cpu) 

Gather/scatter 14.2% 4.6% 1.2% 0.7% 

stream 21.1% 16.9% 5.6% 3.0% 

Idiom HYCOM Milc 

Gather/scat

ter 

1,797 156 

stream 1,300 105 

Idiom instances in source code 

Contribution of idioms to runtime 
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Run times of all idiom instances on one device  

HYCOM 

256cpu  

CPU FPGA GPU 

Gather/Scatter 7,768 495 638 

Stream 28,459 2,302 44,166 

Total 36,556 2,798 44,803 

MILC  

256cpu  

CPU FPGA GPU 

Gather/Scatter 2,376 334 399 

Stream 10,452 771 1,087 

Total 12,827 1,104 1,487 
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Optimal mapping of device 

HYCOM 

256cpu 

CPU 

vs. FPGA 

CPU 

vs. GPU 

Optimal of 

CPU, GPU, 

FPGA 

CPU FPGA GPU 

Gather/Sca

tter 

495 638 448 7,768 495 638 

Stream 2,297 6,096 2,149 28,459 2,302 44,166 

Total 2,792 6,734 2,596 36,556 2,798 44,803 

MILC 

256cpu 

CPU 

vs. 

FPGA 

CPU 

vs. GPU 

Optimal 

of CPU, 

GPU, 

FPGA 

CPU FPGA GPU 

Gather/Scat

ter 

334 399 334 2,376 334 399 

Stream 770 1,087 765 10,452 771 1,087 

Total 1,104 1,486 1,099 12,827 1,104 1,487 
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Summary of Results of porting 

 

Overall improvement of porting idioms results 

in improvements of 3.4% for Milc and 20% for 

HYCOM.  
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Conclusions and Future Work 

 Device choice (CPU,GPU,FPGA) depends on 
idiom and data size 

 Continue extension to other idioms and 
model data transfer costs 

 Adapt the approach for modeling energy 
consumption 
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Questions ? 

 Thank you for your attention ! 

 PMaC URL: www.sdsc.edu/pmac 

 Email: mitesh@sdsc.edu 
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Extra Slides 
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Model Validation – Graph500 

 GPU validation underway:  

– Our CPU predictions are within 13% 

– CUDA version implemented and measured GPU 
version speeds up make_bfs 3X-5X 

– Optimization continues and is ongoing work 
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Model Validation – Entire Application Run 

 Graph500: A data-intensive benchmark 

– Two main kernels: make_bfs and verify_bfs 

– Briefly the algorithm proceeds in two steps:  

– First generates the graph based on the scale 
factor.  

– Second step it samples 64 random key and for 
each key: 

 Executes make_bfs to generate parent array, and then 

 Executes validate routine on the parent array.  

– Performance metric called TEPS (travelled edges 
per second) is calculated using time for make_bfs 
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Idiom Code Coverage 

HYCOM Milc 

Gather/scatter 1797 156 

reduction 110 22 

stream 1300 105 

stencil 132 0 

transpose 3986 286 

Mat-Mat Mult 2161 6 

Mat-Vec Mult 115 2 

Fraction of 

 Loops Covered 

67.45% 37.44% 
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Idiom runtime coverage 

HYCOM 

(8cpu) 

HYCOM 

(256cpu) 

Milc 

(8cpu) 

Milc 

(256cpu) 

Gather/scatter 14.2% 4.6% 1.2% 0.7% 

reduction 0.0% 0.1% 15.7% 13.9% 

stream 21.1% 16.9% 5.6% 3.0% 

stencil 4.7% 11.1% 0.0% 0.0% 

transpose 0.9% 2.0% 0.0% 0.0% 

Mat-Mat 

Mult 

23.7% 8.6% 61.2% 58.6% 

Mat-Vec Mult 0.0% 0.1% 10.5% 16.7% 

All Idioms 64.6% 43.4% 94.2% 93.2% 



PMaC 
Performance Modeling and Characterization 

37/35 

AsHES 2012 

Memory Time 


